The phenomenon known as magnetic focusing was discovered by A. A. Campbell-Swinton in 1896, he found that a longitudinal magnetic field generated by an axial coil can focus an electron beam.This phenomenon was immediately corroborated by J. A. Fleming, and Hans Busch gave a complete mathematical interpretation in 1926.
Diagrams in this article show that the focus coil surrounds the camera tube; it is much longer than the focus coils for earlier TV CRTs. Camera-tube focus coils, by themselves, have essentially parallel lines of force, very different from the localized semi-toroidal magnetic field geometry inside a TV receiver CRT focus coil. The latter is essentially a magnetic lens; it focuses the "crossover" (between the CRT's cathode and G1 electrode, where the electrons pinch together and diverge again) onto the screen.
The electron optics of camera tubes differ considerably. Electrons inside these long focus coils take helical paths as they travel along the length of the tube. The center (think local axis) of one of those helices is like a line of force of the magnetic field. While the electrons are traveling, the helices essentially don't matter. Assuming that they start from a point, the electrons will focus to a point again at a distance determined by the strength of the field. Focusing a tube with this kind of coil is simply a matter of trimming the coil's current. In effect, the electrons travel along the lines of force, although helically, in detail.
These focus coils are essentially as long as the tubes themselves, and surround the deflection yoke (coils). Deflection fields bend the lines of force (with negligible defocusing), and the electrons follow the lines of force.
In a conventional magnetically deflected CRT, such as in a TV receiver or computer monitor, basically the vertical deflection coils are equivalent to coils wound around an horizontal axis. That axis is perpendicular to the neck of the tube; lines of force are basically horizontal. (In detail, coils in a deflection yoke extend some distance beyond the neck of the tube, and lie close to the flare of the bulb; they have a truly distinctive appearance.)
In a magnetically focused camera tube (there are electrostatically focused vidicons), the vertical deflection coils are above and below the tube, instead of being on both sides of it. One might say that this sort of deflection starts to create S-bends in the lines of force, but doesn't become anywhere near to that extreme
The size of video camera tubes are expressed in a strange parameter called the optical format. The optical format is defined as the diagonal length of the sensor (in mm) divided by 16. The result is expressed in inches (not converted to inches!). For instance, a 6.4x4.8 mm sensor has a diagonal of 8.0 mm and therefore an optical format of 8.0/16 = 1/2". The reason why it is expressed in inches is historical: a standard size one inch vidicon tube has only 16 mm of useful imaging area. Therefore 1 inch optics became 16 mm, 1/2 inch optics became 8 mm, etc.
No comments:
Post a Comment